

UNIVERSIDADE PRESBITERIANA MACKENZIE ESCOLA DE ENGENHARIA ENGENHARIA CIVIL

STUDY PLAN

Curricular component:				
Exclusive Course (X) Common Axis () Universal Axis ()				
Course:		Thematic Core:		
Civil Engineering				
Name of Curricular Component:		Code of Curricular component:		
Basic and Environmental Sanitation II				
Workload:	(2) Classroom	Stage: 8th stage		
(2)	(0) Laboratory			
	(0) EaD			
Menu:				
Study the health conditions of the Brazilian population as well as particularly regional environmental				
		nning, management, design, construction,		
operation, and maintenance of water supply systems, focusing specifically on the water intake (intake,				
		d transportation (adduction) of raw water		
		on of water for small, medium and large		
communities).	_	-		
Conceptual Objetives	Procedural Objetives and Skills	Attitudinal Objetives and Values		
Develop theoretical	Understand the panorama of	Consider the use of theoretical		
background and	sanitation conditions in Brazil,	foundations and advanced techniques for		
project experience	critically assessing public health	designing the components of water intake		
(applied to real case	issues and socio-environmental	and adduction of a water supply system.		
studies of existing	implications. Present an integrated	Act ethically when making decisions		
cities) related to a	and multidisciplinary assessment for	involving financial, economic and social		
water supply system,	the planning, design and	aspects, among others. Enable adequate		
considering technical,	management of water supply	supervision, coordination and technical		
legal, environmental,	systems. Develop the theoretical	guidance, through appropriate		
and economic	foundations and advanced	standardization, measurement and quality		
aspects.	techniques for sizing the	control. Have initiative, independence and		
	components of a water supply	responsibility in learning, carrying out,		
Learn the	system including water intake and	with conscience and in an ethical way,		
fundamentals for	transportation of raw water (before	proposed tasks and lists of exercises,		
designing the	treatment). Analyze and develop	meeting the determined deadlines.		
components of a	projects applied to study cases of	Become aware of a continuous and		
water supply system	existing cities. Learn about	systematic study of the curricular		
including the water	international experiences and the	component during the course, in order to		
intake (intake, dam,	state of the art in basic sanitation.	take advantage of it, with the help of the		
intake channel, grid,		books indicated in the bibliography.		
sandbox, and		Maintain a correct attitude regarding		
pumping station) and		attendance, participation and attention to		
transportation		classes, avoiding parallel conversations		
(adduction) of raw		and maintaining focus on content. Respect		
water (to the water		the start and end times of a class.		
treatment plant).				

UNIVERSIDADE PRESBITERIANA MACKENZI ESCOLA DE ENGENHARIA ENGENHARIA CIVIL

Program content:

1. GENERAL CONCEPTS OF A WATER SUPPLY SYSTEMS.

2. SOURCES OF WATER INTAKE AND WATER CONSUMPTION.

3. SELECTION OF LOCATION FOR A WATER INTAKE. DESIGN OF A DAM FOR WATER INTAKE.

4. DESIGN OF AN INTAKE CHANNEL AND GRIDS (FOR REMOVAL OF COARSE MATERIAL).

5. DESIGN OF A SANDBOX (FOR REMOVAL OF FINE MATERIAL).

6. DESIGN OF PUMPING STATION (INCLUDING SELECTION OF PUMPS).

7. DESIGN OF AN ADDUCTION (TRANSPORTATION) SYSTEM OF RAW WATER.

8. ECONOMIC ANALYSIS OF DIFFERENT PIPELINE DIAMETERS.

Methodology:

Organization and resolution of engineering problems (based on real case studies) involving data analysis, maps and models, which contribute to finding an adequate solution for the design of a water supply system. Interactive classes with case studies, group work to design a system in an existing city, and bibliographical research. Classes will be theoretical and practical using blackboard, multimedia projector, microcomputers for students, computer network resources, software, geographic databases and vector/matrix images. The curriculum component will be supported by the Moodle environment. The student is expected to have a proactive behavior.

UNIVERSIDADE PRESBITERIANA MACKENZI ESCOLA DE ENGENHARIA ENGENHARIA CIVIL

Evaluation criteria:

Two intermediate assessments NI1 and NI2 will be carried out.

The first intermediate assessments NI1 includes a written exam (AAN1) and project development (by a group of students) of initial components (first part) of the water supply project (AAP1).

NI1 will be determined by: **NI1** = AANI1x0,50 + AAP1x0,50

The second Intermediate assessment NI2 includes a written exam (AAN2), development (by a group of students) of additional components (second part) of the water supply project (AAP2) and a general evaluation exam (AV1)

NI2 will be determined by: NI2 = AAN2x0,40 + AAP2x0,40 + AV1x0,20

The Partial Average (MI) will be calculated by: **MI** = 0.4*NI1 +0.6*NI2

If MI \geq 6.0 & mandatory attendance of at least 75%, the final assessment called PAF (final written assessment exam) is not required, and the student passes.

The Final Average (MF) is calculated by: **MF** = 0.5*MP + 0.5*PAF

Approval: MF \geq 6.0 with mandatory attendance of at least 75%

Approval criteria follow the UPM Academic Regulations for Undergraduate Courses.

Basic Bibliography:

AZEVEDO NETTO, José M. de. Manual de hidráulica. São Paulo: Edgard Blücher, 1998.

RICHTER, Carlos A.; AZEVEDO NETTO, José M. de. Tratamento de água: tecnologia atualizada. São Paulo: Edgard Blücher, 2005.

TSUTIYA, Milton T. Abastecimento de água. São Paulo: ABES-SP, 2006.

Complementary Bibliography:

AMERICAN WATER WORKS ASSOCIATION. Água: tratamento e qualidade. Rio de Janeiro: Usaid, 1964. 465 p.

FACHIN, Zulmar; SILVA, Deise Marcelino da. Acesso à água potável: direito fundamental de sexta dimensão. 2. ed. Campinas, SP: Millennium, 2012.

HAMMER, Mark J. Sistemas de abastecimento de água e esgotos. Rio de janeiro: LTC - Livros Técnicos e Científicos, 1979.

MORENO, José.; QBAR, Nizar. Manual de controle da qualidade e operação do sistema de abastecimento de água. São Paulo: AESABESP, 2012. 332 p.

VALENCIA, Jorge Arboleda. Manual de tratamiento de aguas potables. Caracas: Programa de Educacion de Ingenieria Sanitaria, 1969. .

Course Coordinator:	Unit Director:
Kamila Rodrigues Cassares Seko	Marcos Massi

UNIVERSIDADE PRESBITERIANA MACKENZIE ESCOLA DE ENGENHARIA ENGENHARIA CIVIL

Signature	
Deputy Coordinator: Eric Ribeiro da Silva	Signature
Signature	